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Abstract—The quality of service (QoS) of intelligent applica-
tions on mobile devices heavily depends on the inference speed of
Deep Neural Network (DNN) models. Cooperative DNN inference
has become an efficient way to reduce inference latency. In
cooperative inference, a mobile device offloads a part of its
inference task to cloud servers. The large communication volume
usually is the bottleneck of such systems. Priory research focuses
on reducing the communication volume by finding optimal parti-
tion points. We notice that the computation and communication
resources on mobile devices can work in pipeline, which can hide
the communication time behind computation and further reduce
the inference latency. Based on the observation, we formulate
the offloading pipeline scheduling problem. We aim to find the
optimal sequence of DNN execution and offloading for mobile
devices such that the inference latency is minimized. If we use
a directed acyclic graph (DAG) to model a DNN, the complex
precedence constraints in DAGs bring challenges to our problem.
Notice that most DNN models have independent paths or tree
structures, we present an optimal path-wise DAG scheduler and
an optimal layer-wise scheduler for tree-structure DAGs. Then,
we proposed a heuristic based on topological sort to schedule
general-structure DAGs. The prototype of our offloading scheme
is implemented on a real-world testbed, where we use Raspberry
Pi as the mobile device and lab PCs as the cloud. Various DNN
models are tested and our scheme can reduce their inference
latencies in different network environments.

Index Terms—computation offloading, mobile cloud comput-
ing, pipeline scheduling, QoS-aware scheduling.

I. INTRODUCTION

With the wide deployment of deep neural networks (DNNs)

in mobile applications, the quality of service (QoS) of those

applications heavily depends on the DNN inference response
time or latency. For example, augmented reality applications

running on mobile devices usually uses DNNs for image

segmentation. A high inference latency may harm the user

experience. Besides augmented reality, there is a large amount

of mobile applications that utilizes DNNs for natural language

processing [1] or computer vision [2], [3]. Some of those

applications may require real-time response. Therefore, it is

necessary to reduce the DNN inference time, especially for

resource-constraint mobile devices.

Cooperative DNN inference over mobile devices and cloud

servers has become an efficient way to reduce the response

time of DNN inference tasks [4], [5]. In cooperative inference,

mobile devices will offload the computation workload of some
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Fig. 1. A DNN partition example of GoogLeNet.

DNN layers to cloud servers. Essentially, DNN inference is

a round of forward propagation. In the forward propagation,

each layer in the network accepts data from its predecessor,

processes it using its specific activation function, and passes

the result to its successors. If mobile devices send outputs

of some intermediate layers to cloud servers, the computation

workload of successive layers is offloaded to cloud servers. In

cooperative DNN inference, those intermediate layers or cut-
points should partition the DNN into two parts. A partition

example of GoogLeNet is shown in Fig. 1. Layers marked

with shadow are cut-points. Mobile devices are responsible

for computing layers prior the cut-points. The other part is

executed by the cloud. This approach can utilize the strong

computation power of cloud servers with the cost of enlarging

the network communication burden. In addition, unlike DNN

model compression approaches, cooperative inference can

accelerate DNN inference without changing DNN structures or

harming inference accuracies. On account of the rapid devel-

opment of wireless communication technologies, cooperative

inference becomes more and more attractive.

Prior research has discussed the optimal partition strategy

for cooperative DNN inference [5], [6]. They apply min-cut

algorithms to find the best subset of DNN layers that should be

offloaded to cloud servers in different network environments.

The best partition is calculated in an effort to minimize the

inference response time. Their partition algorithms can obtain

“sweet” cut-points which minimizes the overall computation

and communication time. However, they ignore that mobile

devices can perform the computation and communication

in pipeline. By using the pipeline, the communication time

can be hidden behind the computation, which can further

reduce the inference latency. Start from the observation, we

investigate other factors that help reduce the completion time

of cooperative DNN inference besides DNN partition.



Although the pipeline can hide the computation time, we

need to carefully schedule the offloading sequence to minimize

the inference latency. Before scheduling, we assume the DNN

partition is given. A set of cut-points can identify a partition.

If a DNN layer belongs to the cut-point set, its output should

be sent from mobile devices to servers. It is not trivial to deter-

mine the communication sequence of those outputs. Besides,

the output of a cut-point is not available until all its predeces-

sors are processed. The precedence relationship among layers

in a DNN can be complex. It is challenging to find the optimal

layer-wise processing schedule. For example, if we process

all layers that are not cut-points first, data communication

cannot start until the computation of those layers is finished.

It may cause unnecessary idle of communication resources,

which enlarges the inference completion time. In contrast,

a good schedule should overlap the computation time with

data communication as much as possible. These observations

motivate us to formulate the offloading scheduling problem

with the objective of minimizing the DNN inference latency.
Generally, if we treat each layer in DNN as a vertex, a

DNN can be modeled as a directed acyclic graph (DAG).

After partition, vertices left on mobile devices may contain

computation and/or communication operations. Optimizing the

layer-wise processing sequence to minimize the completion

time for those layers is a scenario of the NP-hard DAG shop

scheduling problem. We utilize DAG structures to optimize

the scheduling problem for cooperative DNN inference.
We notice that most DNN models have tree structures,

especially after partition. Some DNN models, such as Alexnet-

parallel [7], even consist of multiple independent paths. For

those path-independent DNNs, we investigate an optimal path-

wise scheduling algorithm. Then, we extend the path-wise

scheduling to fit arbitrary tree-structure DAGs by introducing a

graph conversion algorithm that can convert any tree-structure

DAGs into path-independent graphs. Note that the optimal

path-wise schedule of the converted graph might be suboptimal

for the original graph. To find the optimal schedule for tree-

structure DAGs, we further propose a recursive scheduling

algorithm. It recursively merges optimal schedules of subtrees

along branches from leaves to the root. Besides, a vertex

grouping trick is proposed to speed up the recursive schedul-

ing. Finally, we propose a heuristic that is inspired by the

topological sort to schedule general-structure DAGs.
We implement the prototype of offloading pipeline scheme

in Python. Our testbed uses Raspberry Pi as mobile devices,

and a lab PC as the cloud server. The cooperative inference

is implemented using PyTorch. Varieties of DNN models

are tested. Specifically, we use Alexnet-parallel as a path-

independent graph, use GoogLeNet, ResNet, and MobileNet as

tree-structure graphs, and use RandWire as general-structure

DAG. Compared with partition-only schemes, our approach

can significantly reduce the inference latency.
Our major contributions are summarized as follows:

• We propose an offloading pipeline scheme that can speed

up the cooperative DNN inference, which improves the

QoS of varieties of learning-based mobile applications.

• We formulate the offloading scheduling problem to min-

imize the overall inference latency and investigate opti-

mization strategies for different DAG structures.

• We propose an optimal path-wise scheduling algo-

rithm for path-independent graphs, an optimal layer-wise

scheduling for tree-structure DAGs, and a heuristic for

general-structure DAGs.

• We implement the prototype of our offloading scheme

and test its performance with various DNN models. Our

scheme can significantly reduce their inference latencies.

II. RELATED WORKS

The research efforts for DNN inference acceleration can

be categorized into three approaches: model compression [8]–

[11], system design optimization [12]–[15], and cloud/edge

offloading [16]–[19].

One way to accelerate the inference speed on mobile devices

is to compress or simplify the existing DNN models. In

simplified models, the computation workload is reduced by

removing some layers with the sacrifice of the inference

accuracy. For example, Iandola et al. [8] shown SqueezeNet,

which significantly reduce the size of DNNs for image clas-

sification. Huang et al. [11] presented YOLO-lite, which can

achieve real-time object detection on mobile devices without

GPUs, as a simplified version of YOLO [20]. Those efforts

make it possible to deployment DNN-based applications on

mobile devices. However, the inference performance, such as

the classification accuracy, decreases as well. In contrast, we

propose to speedup DNN inference on mobile devices by

fully utilizing the computation and communication resources

with pipeline. Our approach will not affect the inference

performance of DNN model.

Another approach for DNN inference acceleration from the

system/architecture design aspect. Niu et al. [12] proposed

PatDNN, which is an efficient framework to process DNN on

mobile devices with the help of architecture-aware compiler

optimizations. Besides, hardware architecture can be special-

ized to efficiently process DNNs. For example, DeepBurning

[21] helps to implement or design an FPGA-based neural

network accelerator. However, they did not fully investigate

the scheduling problem for DAG-style DNN execution. Plus,

our scheduler can be easily integrated into a mobile cloud

computing system.

Cloud/edge offloading becomes more and more popular with

the rapid improvement of wireless communication bandwidth.

This approach utilizes the collaboration between mobile and

cloud computation resources. The idea of offloading DNN

computation workload is first proposed in Neurosurgeon [4].

However, Neurosurgeon does not consider that computation

and communication resources can work in pipeline, which can

bring additional speedup for DNN inference. Our paper con-

siders the scheduling problem for DNN offloading. Besides,

DDNN [22] presented a distributed DNN computing systems

over mobile, edge, and cloud devices with the objective of

minimizing the communication data size. Our paper has a

different objective that is to reduce the inference makespan.



The makespan consists of computation and communication

latencies. More recently, Zhang et al. [6] further improved

the partition algorithm by proposing a more accurate la-

tency estimation model. Those works mainly investigated the

DNN partition problem. Different from them, we consider

the scheduling problem when offloading multiple paths in

partitioned DNNs. Our scheduling algorithm supports any

partition scheme. Finding the optimal offloading schedule can

further accelerate the DNN inference compared with merely

considering the partition problem.

III. MODEL

A. Preliminaries

We first explain the procedures of DNN offloading before

formulating our scheduling problem. A DNN usually contains

multiple layers to progressively extract features from the input

data. Layers can be categorized into different types, such

as convolutions layers or pooling layers. Each type of layer

contains multiple neurons that are layer-specific functions.

Neurons in a layer are connected in a layer-specific way. In

our paper, we treat a layer, instead of a neuron, as a scheduling

atomic. It is not wise to partition neurons within a layer since

the connection of the neurons is dense. The computation of

each layer could be modeled by a tensor or matrix operation

which has been well optimized in major machine learning

frameworks such as PyTorch or Tensorflow. Partition neurons

within a layer would lose the speedup brought by those opti-

mizations and may also lead to a large communication cost.

Therefore, we consider the layer-wise partition and scheduling

in this paper.

We focus on reducing the response time of DNN inference
tasks for mobile devices. DNN inference tasks involve a single

round of forward propagation on well-trained DNN models.

Specifically, after the input data is fed into a DNN model, each

layer accepts the intermediate result from its previous layer,

processes it according to the layer-specific function, and passes

to the successive layer. The response time or latency is used

to measure the duration from when the input data is loaded to

the DNN until a result is generated.

Offloading part of the DNN computation workload from

mobile devices to cloud servers can speed up the DNN infer-

ence. Cloud servers usually have much stronger computation

power than local mobile devices. Also, the bandwidth of wire-

less communication has been greatly increased. [4]–[6] have

demonstrated the acceleration of the DNN inference brought

by the offloading. Those papers mainly focus on the DNN
partition problem, which aims to find the optimal set of layers

whose computation would be offloaded to cloud servers such

that the overall response time of DNN inference is minimized.

However, they ignore the useful fact that computation and

communication resources can work in pipeline on mobile

devices, which can help to further reduce the inference latency.

Mobile devices can transfer the results of some layers to

cloud servers while computing the output of other layers.

Assuming a DNN partition is given, the cooperation between

mobile devices and cloud servers for a DNN inference task

Fig. 2. Partitioned Inception module is in tree-structure.

contains three steps: 1) computation on mobile devices, 2) up-

load intermediate results from mobile devices to cloud servers,

3) computation on the could and send back the inference

result. The first two steps are performed on mobile devices.

Among them, the computation is performed on the CPU/GPU

and the communication is performed by the network interface.

Therefore, they can work in a pipelined manner. The third part

is executed on cloud servers and it would not start until all

required intermediate results are received. Considering there

are multiple layers of partitioned DNN that would be executed

on the mobile devices, their processing sequence inevitably

affects the inference latency. The DNN scheduling problem is

to find the optimal processing sequence to further minimize

the DNN inference latency after a partition is given.

B. Notations

We model DNNs as directed acyclic graphs (DAGs) and

treat a layer in DNN as a vertex in the DAG. The connections

between layers are represented by edges between vertices.

Formally, let G = (V,E) denote a DAG, where V is the

vertex set and E is the edge set. Each node v ∈ V represents

a layer in the DNN instead of a neuron since our partition

granularity is layer-wise. An edge e ∈ E represents the

data communication between two vertices that are incident

to e. The direction of the edge shows the data flow direction.

Specifically, an edge (vi, vj) means the output of vi should be

sent to vj . This precedence relation is denoted as vi ≺ vj . The

vertex that has no predecessors (or successors) is the source (or

destination) vertex of the DAG. The edge weight represents

the communication volume. The forward propagation of the

DNN inference can be viewed as a flow from the source to

the destination in the DAG.

Before scheduling, we assume the partition of DNN is

known. Let P ⊂ V denote the partition of the DNN model. P
contains a set of cut-points. Cut-points partition the DAG G
into two sub-graphs. Specifically, all layers v ∈ P and their

predecessors would be executed on mobile devices. The output

of all layers v ∈ P should be sent from mobile devices to

cloud servers via wireless communication channels. The cloud

server cannot start computation until it receives all output of

v ∈ P . We focus on optimizing the scheduling for mobile

devices. Let G′ denote the sub-graph that describes the data

flow on mobile devices. Formally, G′ = (S, (S × S) ∩ E),
where S = {v ∈ V |v ≺ u, ∀u ∈ P}∪P . The set S represents

DNN layers that are executed on mobile devices after partition.

The computation of layers that are successors of v ∈ P would

be offloaded to cloud servers. The edge set (S×S)∩E keeps

the precedence relations among vertices in S. We need to



Fig. 3. Partitioned Alexnet-Parallel is in path-independent.

carefully schedule the processing order of layers in S to reduce

the DNN inference latency.

On mobile devices, we focus on finding a layer-wise

processing sequence for the partitioned DNN. Formally, let

σ = (x1, x2, . . . , x|S|) denote the schedule, which is a per-

mutation of S. xi represents a vertex v ∈ S. The subscript of

xi shows its processing priority. xi is processed before xj if

i < j. According to the order in σ, the mobile device would

process one layer at a time. Our model does not consider

the parallel processing of multiple layers since mobile devices

usually have one CPU. Splitting the computation resource may

enlarge the processing time [23]. For DNN layers v ∈ P , their

output should be sent to the cloud. The communication starts

immediately after the output of v is generated if the network

resource is idle. Otherwise, the output is queued for sending.

If there is another layer u which is scheduled after v, the

computation of u also starts without waiting for the completion

of network communication. In this way, the computation and

communication resources work in the pipeline, which helps to

reduce the response time of DNN inference. In our scheme, the

cloud will not start computation until it receives all required

data. Therefore, the cloud computation is not considered as

a part of the pipeline. We mainly investigate the scheduling

problem for mobile devices.

The purpose of the scheduling is to reduce the response time

or latency of the DNN inference. To formulate the response

time, we introduce two more notations to denote the commu-

nication and computation time of each layer. Specifically, Let

functions f : V → R and g : V → R denote the computation

and communication time of each layer, respectively. The

computation time f(v) of layer v can be accurately predicted

[6]. For example, on mobile devices, the computation time

of different types of layers can be predicted with regression

models in a short time. The regression model can be pre-

trained and installed on mobile devices. The communication

time is mainly related to the data volume and the network

environment. Note that a layer v has non-zero communication

time only if v ∈ P , i.e., it is a cut-point. For other layers

u /∈ P , g(u) = 0. We use a linear regression model to calculate

the communication time. Let w(v) denote the output volume

of layer v. Then, the communication time g(v) = c+w(v)/b,
where b is the bandwidth of the communication channel and

c is the end-to-end delay time that includes the propagation

delay and the time for establishing the channel.

The inference latency is measured by the length of duration

from when the input data is available until the inference result

is calculated. In our mobile computing scenario, it consists of

three parts. They are the computation time on mobile devices,

the communication time, and the computation time on cloud

devices. The cloud computation time is usually much smaller

than others. Also, given a DNN partition, its processing time

on the cloud is usually constant. Therefore, we omit the cloud

computation time when formulating the inference latency.

Similarly, the time consumption of sending inference results

from the cloud to the mobile is negligible.

Let τ denote the latency of DNN inference. Without using

the pipeline, τ =
∑|S|

k=1(f(xi) + g(xi)). We propose to

reduce the latency by hiding the communication time behind

computation using the pipeline. In this case, the latency can

be recursively calculated based on the completion time of

each layer xi in the schedule σ. Let ti denote the wall-clock

time at which the execution (including both computation and

communication) of xi is completed. We use t0 to denote the

arrival time of the inference task. Then, the value of ti and τ
can be calculated with the following proposition.

Proposition 1: Given a schedule σ for a partitioned DNN,

its inference latency on mobile devices is τ = t|S|− t0, where

ti = max{t0 +
∑i

k=1 f(xi), ti−1}+ g(xi), i = 1, 2, . . . , |S|.
Proof: The term t0 +

∑i
k=1 f(xi) represents the completion

time of xi’s computation. ti−1 is the completion time of xi’s

communication. When the network environment is bad, data

communication can take longer time than computation. It is

possible that network resources are busy when the computation

of xi is completed. The communication of xi cannot start until

its computation and the previous layer’s communication are

finished. Those conditions can be formulated as max{t0 +∑i
k=1 f(xi), ti−1}. Therefore, the completion time of xi is

ti = max{t0+
∑i

k=1 f(xi), ti−1}+g(xi). The DNN inference

latency is the duration between t0 when the task arrives and

t|S| when the execution of the last layer is finished. Therefore,

τ = t|S| − t0. �
C. Problem Formulation

This paper investigates the layer-wise pipeline scheduling

problem for cooperative DNN inference. Our objective is to

minimize DNN inference latency by finding the best schedule

σ. The scheduling problem can be formulated as following.

min
σ

τ = t|S| − t0 (1)

s.t. ti = max{t0+
∑i

k=1
f(xi), ti−1}+g(xi), ∀xi∈σ (2)

i ≤ j, ∀xi ≺ xj , ∀xj ∈ σ (3)

∪xi∈σ xi = S, |σ| = |S| (4)

Eq. (1) shows our objective of minimizing the latency of

DNN inference. Eq. (2) shows the recursive calculation of

the completion time for a specific schedule σ. This equation

explains the correlation between the latency τ and a schedule

σ. Eq. (3) is the precedence constraint. A feasible schedule

σ cannot violate the precedence constraints indicated by the

DAG. For all layers xj in the schedule, if a layer xi is a

predecessor of xj in the DAG representation of the DNN,

then xi should be processed before xj , i.e. i < j. Eq. (4) is

the permutation constraint. A feasible schedule σ should also

be a permutation of S. It means all layers in the partitioned

DNN should be executed exactly once on mobile devices.



Algorithm 1 Johnson’s rule [24]

Input: Set of paths H = {h1, h2, . . . , hn}
Output: The optimal path-wise schedule

1: Communication-heavy set S1←{hi ∈H|f(hi)<g(hi)}.

Computation-heavy set S2←{hi∈H|f(hi)≥g(hi)}
2: σ1← Sort S1 for ascending order of f(hi).
3: σ2← Sort S2 for descending order of g(hi).
4: σ←σ1||σ2.

5: return σ

(a) Original DAG (b) After conversion

Fig. 4. An illustration of the tree structure DAG.

D. Problem Analysis

It is challenging to find the optimal solution for our

scheduling problem. Our scheduling problem can be viewed

as a spatial version of the DAG shop scheduling problem. In

DAG shop scheduling, each vertex in the DAG has multiple

operations which need to be processed on different types of

resources. Even when the number of operations and resources

are 2, the DAG shop scheduling problem is NP-hard [23]. The

precedence constraints in the DAG make it challenging to find

the optimal schedule.

There are some useful properties that can be used when

solving our scheduling problem. The first observation is that

for many DNN models, the partitioned DNN left on mobile

devices has tree structures. For example, after partition, the

GoogLeNet [25] using the partition algorithm proposed in

[6], the partitioned DNN left on mobile devices is a tree as

shown in Fig. 1. Similarly, a partitioned Inception module is

also a tree as shown in Fig. 2. Scheduling a tree-structure

DAG is easier than scheduling a general DAG since some

tricky precedence relations (such as diamond structures) are

removed. Another useful property is that g(v) = 0 for vP .

Only if a layer is a cut-point, its communication time is non-

zero. For a tree-structure DAG, this property means that only

leaf nodes have network communication. We only need to

care about the computation time for non-leaf nodes in this

case. Based on those observations, we first investigate the

scheduling problem for tree-structure DAGs in Section IV.

Then, we extend our solution to general-structure DAGs.

IV. SCHEDULING FOR TREE-STRUCTURED DAGS

According to our observation, many partitioned DNNs on

mobile devices have tree structures. Among those DAGs, many

DNN models have parallel paths, such as Alexnet-Parallel [7].

For those models, we propose an optimal path-wise scheduling

Algorithm 2 DAG Conversion Algorithm

Input: Tree-structure graph G′ = (S, (S × S) ∩ E))
Output: A path-independent DAG

1: Initialize a queue Q = [vr], where vr is the root of G′.
2: while Q is not empty do
3: v ← poll from Q. Push direct children of v into Q.

4: if v �= vr and out-degree(v) > 1 then
5: U ← children of v; m ← out-degree of v.

6: Duplicate v and its incoming edge m− 1 times.

7: For each replicate, link a unique ui ∈ U .

8: return G′ as the path-independent graph.

algorithm. For other tree-structure DAGs, we investigate a

method that converts them into trees with independent paths.

Besides, we propose a better approach that optimally schedules

them without conversion.

A. Path-wise Scheduling

The precedence constraint among vertices is a major chal-

lenge for DAG scheduling. If a DAG only contains indepen-

dent paths, we can perform path-wise scheduling, which is

much easier to solve. Fig. 3 shows a DAG that has independent

paths. If a DAG does not consist of independent paths, it can

be easily converted into a graph that has multiple independent

paths as illustrated by Fig. 4(b). Therefore, we first investigate

the path-wise scheduling.

In path-wise scheduling, DNN layers on the same path are

treated as a block. For example, vertices v1 and v4 in Fig. 4(b)

is viewed as a virtual vertex in the path-wise scheduling. We

use hi to denote a path instead of a DNN layer or a vertex

when scheduling the converted DNN. With a slight misuse of

notations, f(hi) represents the computation time of the path

and its value is the summation of computation time of layers

clustered in hi. Besides, g(hi) refers to the communication

time of the path and it equals to the communication time

of the last layer in path hi. The optimal schedule of those

independent paths can be easily found.

The path-wise scheduling can be optimally solved by John-

son’s rule [24]. The scheduling problem can be categorized as

a flow shop scheduling problem [26], [27]. The flow shop

problem can be optimally solved by using Johnson’s rule,

when there are only two types of operations (computation

and communication). The procedures of the Johnson’s rule

is illustrated in Alg. 1. In line 1, we split all paths into two

groups based on their computation and communication time.

The communication-heavy set S1 contains all paths whose

communication time is longer than its computation time. For-

mally, S1←{hi∈H|f(hi)<g(hi)}. The computation-heavy set

S2 contains the other paths. Formally, S2←{hi∈H|f(hi)≥
g(hi)}. Then, we sort the paths in the communication-heavy

set S1 based on their computation time in ascending order.

Line 3 sorts the paths in S2 based on their communication

time in descending order. Finally, we concatenate two sorted

order set σ1 and σ2. Paths from the computation-heavy set S2



Algorithm 3 Tree-structure DNN Scheduling

Input: Tree-structure graph G′ = (S, (S × S) ∩ E))
Output: The schedule σ for all v ∈ S

1: Initialize a mapping function ϕ.

2: for each leaf node v of G′ do
3: Add a key-value pair 〈v, [(f(v), g(v))]〉 to ϕ.

4: while |S| > 1 do
5: v ← pick a leaf node with the largest depth in current

G′. U ← all sibling nodes of v, including v. vp ← the

parent node of v.

6: L ← {ϕ(u)|∀u ∈ U}
7: l ← merge scheduling lists in L using Alg. 4.

8: Get the head element (f(vl), g(vl)) of l. Retrieve the

corresponding DAG vertex as vl.
9: Group vp and vl, and use vp to represent the group.

10: Update the head element of l into (f(vp)+f(vl), g(vp)+
g(vl)). S ← S \ U . Update G′.

11: Add a key-value pair 〈vp, l〉 to ϕ
12: return ϕ(vr) as the final schedule, where vr is the

element left in S and it is also the root of the tree.

are placed after paths from S1. After concatenation, the order

set σ contains the optimal path-wise scheduling.

The insight behind Johnson’s rule is greedy. For paths with

larger communication time, their communication should start

as early as possible. Their communication cannot begin until

their computation is over. Therefore, communication-heavy

paths with shorter computation time should be executed first.

Computation-heavy paths are sorted symmetrically.

If a DAG does not originally have independent paths, it

can be easily converted into a path-independent one [28]. The

procedures are shown in Alg. 2. Intuitively, we perform a

breadth-first search (BFS) on G′. Duplicate each internal node

based on its out-degree and reconnect its successors such that

each replicated node has one direct child. Specifically, line

1 initializes a queue Q using the root of G′. Then, in each

iteration, a vertex v is polled from Q. Direct children of v are

pushed into Q for BFS. In lines 4-7, if the out-degree m of

v is greater than 1, then we duplicate the vertex m− 1 times

and reconnect m− 1 outgoing edges such that each replicate

has a unique successor. Note that the root node is skipped

since there is no need to duplicate input layers. Eventually,

the out-degree of every internal node in G′ becomes 1. After

conversion, G′ only contains independent paths.

We need to pay additional attention when actually executing

the schedule of a converted graph. To make sure the computa-

tion result is not changed after the conversion, duplicate layers

should be executed only once. When executing a path-wise

schedule, we use a table to record the execution status and

result of each layer. If a layer has been executed in other paths,

the computation of the layer shall be skipped. The following

layer should use the output recorded in the table. In this way,

we can guarantee that the converted DNN generates the same

result as the original DNN.

Although we can find the optimal solution for the path-

Algorithm 4 Merging Scheduling List

Input: A set L of scheduling lists

Output: A new list l that merges all lists in L
1: l ← [], T ← {}.

2: while L is not empty do
3: for li ∈ L do
4: Peek the first tuple mi in li. T ← T ∪mi

5: r←argminT (Find r such that tuple mr is the smallest

in T ). Johnson’s rule is used for tuple comparisons.

6: Append mr to l. Remove mr from corresponding lr.

7: Remove lr from L if lr = [].
8: return l as the merged list.

wise scheduling, it is not optimal for the original layer-

wise scheduling problem since path-wise scheduling may miss

potential optimization chances. Especially for scheduling with

graph conversion, redundant layers inserted for conversion

are not actually executed when running the DNN inference,

while our path-wise scheduling algorithm assumes they are.

Therefore, the optimal layer-wise schedule might be missed.

B. Layer-wise scheduling

The optimal path-wise scheduling may be suboptimal for

the layer-wise scheduling problem. Besides, inserting duplicate

vertices and maintaining the execution status table bring addi-

tional memory costs. Therefore, we try to extend the Johnson’s

rule and present another scheduling algorithm that does not

require the DAG conversion.

For layer-wise scheduling of tree-structure DNNs, we pro-

pose to recursively merge the scheduling of subtrees. Specifi-

cally, if there are no precedence constraints among all children

nodes in a subtree, i.e., all children nodes are leaves, then we

apply Johnson’s rule to sort the children nodes. For other cases,

we recursively schedule subtrees rooted at internal nodes and

merge the scheduling results of sibling nodes. In this way,

we convert each subtree into a list. The lists are recursively

merged into the final schedule. This idea is inspired by merge

sort. The novelty is that we use Johnson’s rule to determine the

relative order of nodes when merging the scheduling results

of sibling nodes. Besides, for each subtree, we group its

root with the first element of the merged scheduling list to

reduce the solution space. The grouping will not lose the

optimal schedule. More details are explained in Theorem 1

after showing the procedures of our scheduling algorithm.

Before diving into algorithm details, we need to explain

addition notations used in the scheduling algorithm. Our

scheduling algorithm will convert subtrees into lists. We

use l to denote a list. Each element in list l is a tuple

(f(v), g(v)), where v ∈ S. The tuple record the computation

and communication time of a vertex v ∈ S. The order of

elements in the tuple represents the processing sequence of

the corresponding DNN layers. Elements with smaller indexes

should be executed first. We use L to denote the set of

lists, considering there are multiple lists that are converted

from different subtrees. Let ϕ : S → L denote the mapping



function. It maps a vertex in tree-structure DAG into a list.

ϕ(v) represents the scheduling list of the subtree rooted at v.

To explicitly illustrate our scheduling algorithm, we show its

iterative implementation in Alg. 3. In lines 1 to 3, we initialize

the mapping function ϕ(v) that maps a DAG vertex v into a

scheduling list. The scheduling list of a leaf vertex only con-

tains itself. Hence, we first add the mapping 〈v, [(f(v), g(v))]〉
into ϕ for each leaf node v of G′. The loop in lines 4 to

11 updates the mapping ϕ and graph G′. In each iteration, a

vertex v is randomly picked from the deepest leaf nodes of

G′. All sibling vertices of v, including v, are stored in set

U . Line 5 also finds the parent vertex vp of v. Then, line

6 constructs a set L that contains the scheduling list of every

element u ∈ U using the mapping function ϕ. Scheduling lists

in L are merged into a single list l by calling Alg. 4 in line 7.

List l contains the schedule of vertices in the subtree rooted

at vp, except vp itself. Instead of simply inserting vp to the

head of the schedule, we propose to group vp with the first

element of the schedule. The grouping can efficiently reduce

the time complexity of scheduling without missing the optimal

schedule. Theorem 1 shows that our scheduling algorithm with

grouping is optimal. The complexity analysis is investigated

in Theorem 2. Line 8 retrieves vl which corresponds to the

first element (f(vl), g(vl)) of list l. Note that vl can be either

a single DAG vertex or a representative of a vertex group. In

both cases, line 9 creates a new group that collects vp and

vl. The new group is represented by vp. The computation and

communication time of the group are updated accordingly in

line 10, i.e., f(vp) := f(vp)+f(vl) and g(vp) := g(vp)+g(vl).
Besides, G′ is updated by removing vertices in U from the

graph. Line 11 adds 〈vp, l〉 to ϕ. The key vp represents the

root of the subtree and the value l is the schedule of vertices in

the subtree. When there is only one vertex left in the graph,

the scheduling is finished. We use vr to denote this vertex,

considering it is the root of the original tree. ϕ(vr) is returned

as the final schedule in line 12.

The list merging algorithm is shown in Alg. 4. Intuitively,

we iteratively compare the head of every list and append the

smallest element to the final merged list. When comparing two

elements in the list, we use Johnson’s rule shown in Alg. 1 to

determine their relative order. Specifically, line 1 initializes a

list l to store the final result and a set T to keep the head

elements of lists in L. In lines 2 to 8, the smallest head

element is iteratively chosen and added to l, until L becomes

empty. Lines 3 and 4 peek head elements and put them in

T . Line 5 finds the smallest element based on Johnson’s

rule. Each element is a tuple (f(v), g(v)) representing the

computation and communication time of a DAG vertex. For

two tuples (f(a), g(a)) and (f(b), g(b)), we first determine

whether they are communication-heavy or computation-heavy.

If both of them are communication-heavy, then (f(a), g(a)) <
(f(b), g(b)) if f(a) < f(b). If they are computation-heavy,

(f(a), g(a)) < (f(b), g(b)) if g(a) > g(b). If they are different

types, then the communication-heavy one is smaller. Let mr

denote the smallest element selected in line 5. Then, it is

appended to the merged list l in line 6. Also, mr is removed

f (vs) f (vm) f (vl)

g(vm) g(vl)

Comp.

Comm. Time

g(vm) g(vl)

f (vl)f (vm) f (vs)Comp.

Comm. Time

Fig. 5. Switching vs and vm will not enlarge the completion time.

from the list lr in which it originally is. If lr becomes empty,

the list is removed from L in line 7. Finally, l is returned as

the final merged list in line 8.

Theorem 1: The processing schedule generated by Alg. 3

is optimal for tree-structure DAGs.

Proof: We use mathematical induction to prove this theorem.

The base case is a subtree that only contains one vertex.

Obviously, our algorithm can generate the optimal schedule for

the base case. For other cases, we use vs to denote the root of

a subtree. Let U denote the set of direct children of vs. Then,

we need to prove that if optimal schedules of every subtree

rooted at ui ∈ U are known, our algorithm can generate the

optimal schedule for the subtree rooted at vs.

Let li denote the optimal schedule of the subtree rooted at

ui ∈ U . Our scheduling algorithm merges li∀ui ∈ U into

a single list. When extending the result list in the merging

process, our algorithm iteratively compares and selects the

head element of every li∀ui ∈ U . Hence, the relative order

of each li is maintained in the final result list. Besides, the

order of element selection is based on Johnson’s rule which

is optimal [24]. Therefore, the result list is optimal.

The result list contains all vertex in the subtree rooted at

vs, except vs itself. Hence, we also need to prove the list

is still optimal after grouping vr with the first element in

the list. Let vl denote the element corresponding to the first

component in the result list. We will show that vs and vl are

adjacent in one of the optimal schedules of G′. Assuming

vs and vl are not adjacent in any optimal schedule, then

there is at least one vertex vm that stands between vs and

vl. Note that vm is a vertex in graph G′ but does not belong

to the subtree rooted at vs since vl is the first element in

the subtree schedule. Switching the position of vs and vm
will not enlarge the overall completion time. Specifically,

g(vs) = 0 since vs is a internal vertex that cannot be a cut-

point. By the definition in Section III-B, only if a vertex is a

cut-point, it has nonzero communication time. As illustrated

in Fig. 5, the completion time of vl before switching is

ta = f(vs)+f(vm)+max{f(vl), g(vm)}+g(l). After switching,

it becomes tb = f(vm)+max{f(vs)+f(vl), g(vm)}+g(vl).
The difference ta− tb = max{f(vs)+f(vl), g(vm)+f(vs)}−
max{f(vs) + f(vl), g(vm)} ≥ 0. The insight is that the

computation completion time would not change because of

scheduling, but the communication may start earlier. Thus,

switching vs and vm will not enlarge the completion time.

After switching, vs and vl are adjacent eventually. Because

switching cannot delay the completion time, the schedule after

switching is optimal. It contradicts to the assumption that vs



Algorithm 5 General-structure DNN Scheduling

Input: General-structure graph G′ = (S, (S × S) ∩ E))
Output: The schedule σ for all v ∈ S

1: Initialize the schedule list σ ← []
2: while S is not empty do
3: T←{vi∈S|(vi,vj) /∈(S × S) ∩ E,∀vj ∈S}
4: Communication-heavy set T1 ←{v ∈ T |f(v) < g(v)}.

Computation-heavy set T2←{v∈T |f(v) ≥ g(v)}
5: σ1←Sort v ∈ T1 for ascending order of f(v). σ2←Sort

v ∈ T2 for descending order of g(v). σ ← σ1||σ2||σ
6: Update S←S\T . Remove corresponding edges in G′.
7: return σ as the schedule list

and vl are not adjacent in optimal schedules. Therefore, we

can group them together without losing the optimal schedule.

Above all, the schedule found by Alg. 3 is optimal. �
Theorem 2: The time complexity of scheduling a k-ary tree

using Alg. 3 is O(n2), where n is the number of vertex in G′.
Proof: We first investigate the time complexity of the merging

algorithm shown in Alg. 4. Assume that the total number

of elements in the final merged list is m. Then, the time

complexity of Alg. 4 is O(|L|m), where |L| is the number

of lists. Specifically, each selection of element in the final

list costs O(|L|) since it needs |L| − 1 times comparison to

determine the smallest head of |L| lists. If there are m elements

in the merged list, the time consumption is O(|L|m).
For a k-ary tree, Alg. 3 needs to merge k scheduling lists at

every internal node. For each time of merging, there are O(n)
nodes in the merged list. Hence, each merging operation costs

O(kn) time. There are at most O(n) internal nodes. Therefore,

the time complexity of Alg. 3 is O(n)×O(kn) = O(n2). �
Actually, the real execution time of Alg. 3 can be signif-

icantly reduced by the grouping trick. After grouping, the

number of elements in the merged group is at most m instead

of n, where m is the number of leaf nodes. For example, for

a full binary tree, m = (n + 1)/2. The grouping trick can

roughly reduce the execution time by half, which is helpful

for efficient scheduling.

V. SCHEDULING FOR GENERAL DAGS

For some special DNN models, such as RandWire [29], the

partitioned network G′ left on mobile devices is not a tree. We

propose to combine ideas of topological sort and Johnson’s

rule to schedule those general DAGs. The topological sort is

used to find feasible processing sequences for a general DAG.

However, there are lots of feasible topological sequences.

We use Johnson’s rule to pick one among those sequences.

Briefly, we iteratively apply Johnson’s rule on a set of DAG

vertices with no outgoing edges until all vertices are scheduled.

Different from the standard topological sort algorithm, we

iteratively work on vertices with no outgoing edges instead

of incoming edges.

Detailed procedures of the general-structure DAG schedul-

ing algorithm are illustrated in Alg. 5. We first initialize an

empty list σ. In the loop of lines 2-6, we iteratively schedule

vertices with no outgoing edges. Set T in line 4 contains

those vertices. We apply Johnson’s rule on T in lines 5 and 6.

Vertices in T are divided into two groups T1 and T2 according

to their computation and communication time cost. T1 and T2

are sorted into lists σ1 and σ2, respectively. The sorted lists

are concatenated before σ. The concatenation is denoted by

||. We still can group vertices with no outgoing edges with

their predecessors. A vertex may have multiple predecessors

in general DAGs. We can arbitrarily choose one. However,

we cannot guarantee the result is optimal. Line 6 removes

scheduled vertices from S and updates the graph G′ for the

next iteration. Finally, σ is returned as the final schedule.

Because of the complex precedence constraints in general

DAGs, we cannot guarantee the schedule generated by Alg.

5 is optimal. This limitation does not significantly affect the

real-world performance of our offloading pipeline. For most

widely used DNN models, there are repeated modules in their

structures, such as residual blocks. If we treat each repeated

module as a block, most of DNNs have tree-structures. Even

if a block is partitioned, the partitioned DNN left on mobile

devices usually has a tree structure. To the best of our

knowledge, only some experimental DNN models, such as

RandWire [29], have general DAG structures.

VI. EXPERIMENT

A. System Setup

Our cooperative DNN offloading system contains a mobile

device and a cloud server. The mobile device would initialize

a DNN inference task and offload a part of the task to the

cloud server. In our testbed, a Raspberry Pi model 4B is used

as the mobile device and a PC is used as the cloud server.

The Raspberry Pi is a tiny single-board computer that equips

a quad-core CPU (Cortex-A72) and 4GB RAM. It runs the

Raspberry Pi OS which is based on Debian Linux. The PC in

our lab equips a six-core CPU (Intel i7-8700), a GTX 1080

GPU, and 32GB RAM. Its operating system is Ubuntu 20.04.

The cloud inference is performed on the GPU. The mobile

device and the cloud server are placed within the same Wi-

Fi network to simulate the wireless communication. Besides,

the bandwidth of the communication channel is controlled

by using the wondershaper package to simulate different

wireless environments.

Both client and server sides are implemented in Python.

The client-side refers to the mobile device and the server

refers to the cloud. On both sides, we use PyTorch as the

DNN inference engine. Although PyTorch has its distributed

computing package, it does not provide APIs for layer-wise

or path-wise DNN offloading to the best of our knowledge.

We use gRPC to implement our DNN offloading scheme.

To achieve the path or layer level offloading, we create

the submodels for each path according to the partition and

scheduling outcomes. In our experiment, DNN models are pre-

cut at all possible points and are pre-allocated at both client

and server sides. Each gRPC message would contain a string

to indicate the submodel and a byte array to store its output.



Specifically, for a DNN inference task, the client first

performs DNN partition and scheduling. After that, it loads

input images and transforms them into tensors. Then, the

client performs the forward propagation by calling the cor-

responding submodels according to the schedule. For the

output tensor of each submodel, the client needs to encode

it for serialization before the network transmission. We use

the tensor.save() API to perform the serialization. The

encoded tensor is flushed into a BytesIO which is a virtual

interface in memory. The client then assembles a gRPC request

with the serialized tensor and enqueue it for communication.

On the server-side, the request would be loaded from the

BytesIO and decoded with the tensor.load() API.

Then, the server PC performs a forward propagation using the

decoded tensor. To reduce the response time, the server runs

all inference tasks on its GPU with CUDA. The final output

of the DNN inference is sent back to the client with a gRPC
reply message. Our testbed supports any clients that running

on Linux kernel based operating systems. Also, it can be easily

extended to support other systems since gRPC works across a

variety of platforms.

Before partition and scheduling, it is important to accurately

estimate the computation and communication time. To reduce

the estimation overhead for computation time, each device

uses a time table to store the inference time of each layer.

Considering the DNN inference time on a specific device

is much more stable than the communication time, using a

time table is sufficient for the estimation. Besides, the lookup

table would only take a small portion of memory space

since the number of commonly used DNN types is limited.

Mobile devices use PyTorch Profiler to measure the

computation time and fulfill the table before scheduling. Each

device only needs to run the profiler once when it starts. The

communication time varies with the network environment. As

explained in Section III-B, we use a linear regressing model to

estimate the communication time. The regression model needs

to be pre-trained before scheduling. Specifically, each mobile

device needs to sample the communication delay by sending

spatial gRPC requests. Sizes of those requests are pre-defined.

The client records the response time of those requests and then

trains the regression model based on the sampled information.

During scheduling, the communication time g(v) of layer v
can be quickly calculated using this regression model. It is

worth noting the regression model should be updated regularly

to detect the changes of the network environment.

We use widely deployed DNN models to validate the

proposed algorithms. Specifically, we use Alex-Parallel [7] as

the path-independent graph. For tree-structure DAGs, we use

GoogLeNet [25] and Multi-Stream network [30]. GoogLeNet

contains several Inception modules. If the module is not

partitioned, the entire module is treated as a vertex. If the

module is cut, each layer left in the module is viewed as a

vertex. For general-structure DAGs, we use RandWire [29].

There are no specific modules in the RandWire, and each layer

is modeled as a vertex in DAG.

Alex-Parallel GoogLeNet Multi-Stream RandWire
0

2000

4000

6000

8000

In
fe

re
nc

e 
La

te
nc

y (
m

s) CO
LO
PO
OPSS

(a) 3G (1.1 Mbps)

Alex-Parallel GoogLeNet Multi-Stream RandWire
0

500

1000

1500

2000

2500

3000

In
fe

re
nc

e 
La

te
nc

y (
m

s) CO
LO
PO
OPSS

(b) 4G (5.85 Mbps)

Fig. 6. Comparison on different network environment.
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B. Experiment Results

We first introduce the comparison algorithms. In the exper-

iment, our Offloading Pipeline Scheduling Scheme is label as

OPSS. We use LO to denote the local-only scheme. It means

that all DNN inference computations are completed on mobile

devices. Besides, we also compare OPSS with CO which

means the cloud-only scheme. In CO, mobile devices directly

update the input tensor to the cloud, and all computations are

done by the cloud. Another comparison algorithm is PO which

represents the state-of-the-art partition-only scheme [6]. When

comparing PO with OPSS, the DNN are partitioned at the

same place. The difference is that OPSS uses pipeline to hide

its communication time.

Fig. 6 shows the performance comparison on different

network environments. Same as [6], the typical bandwidth of

3G and 4G networks are set to 1.1 Mbps and 5.85 Mbps,

respectively. From 6(a), we can find that OPSS significantly

reduces the inference latency for Multi-Stream and RandWire.

However, the speedups on Alex-Parallel and GoogLeNet are

not obvious. It is because the communication time in of-

floading is longer than the local processing time when the

network bandwidth is relatively low. In this case, processing

the entire model on the mobile device is the best strategy.

After we increase the network bandwidth to 5.85 Mbps, OPSS

can efficiently reduce the inference time for Alex-Parallel and

GoogLeNet as shown in Fig. 6(b). From the figure, we also

notice that OPSS can further reduce the inference latency,

comparing with the state-of-the-art DNN partition algorithm.

It shows that our scheduling algorithm can efficiently hide the

communication time behind computation. In addition, com-

paring the speedup of different DNN models, we notice that

the benefits of scheduling are more obvious when the DNN

model is complex. There are more optimization opportunities

in complex DAGs. Both our tree-structure DAG scheduling

algorithm and the general DAG scheduling algorithm can

adaptively reduce the inference latency in different network

environments.



Fig. 7 shows the comparison on Wi-Fi network. The typical

bandwidth of Wi-Fi is 18.88 Mbps which is much faster than

3G and 4G. In this case, offloading more computation load to

the cloud is a better choice unless the volume of intermediate

results is extremely large. In Fig. 7(a), although OPSS still

outperforms PO, the gap between them becomes smaller com-

pared with the 4G case. This result is reasonable. When the

bandwidth is large, the communication time is small. Hiding

the small communication time by using the pipeline would not

significantly reduce the overall inference latency. This inspires

us to investigate the feasible region in which OPSS can benefit

from pipeline scheduling. Besides the inference latency, we

also investigate the scheduling overhead of OPSS on different

DAG structures. Fig. 7(b) shows the scheduling overhead

of OPSS. We repeatedly run our scheduling algorithm on

different DNN models and show the overhead distribution on

each model. From the figure, we notice that the overhead is

negligible compared with the inference time. After partition,

the number of cut-points is usually less than 10. Therefore, our

scheduling algorithm for tree-structure DAGs can efficiently

find the optimal scheduling with the grouping trick. More

importantly, we use a lookup table to store the local inference

time. It saves the time cost of profile estimation. In addition,

the communication time is estimated by using a simple linear

regression model which is also time-efficient.

VII. CONCLUSION

This paper investigates the pipeline scheduling problem for

cooperative DNN inference. The complex precedence con-

straints in general DAGs bring challenges for the scheduling

problem. We utilize DAG structures to optimize the scheduling

problem. For path-independent DAGs, we apply Johnson’s

rule to generate optimal path-wise scheduling. A graph con-

version algorithm is proposed to find path-wise scheduling

for arbitrary tree-structure DAGs. However, the optimal path-

wise schedule may be suboptimal after conversion. We pro-

pose another layer-wise scheduler that generates an optimal

schedule for any tree-structure DAGs. For general-structure

DAGs, we propose a heuristic scheduling algorithm based on

the topological sort. Experiment results on a real-world testbed

show that our pipeline scheduling scheme can significantly

reduce the inference latency.
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